Recursive formulas for embedding distributions of cubic outerplanar graphs

نویسندگان

  • Yichao Chen
  • Tao Wang
چکیده

Recently, the first author and his coauthor proved a k-order homogeneous linear recursion for the genus polynomials of any H-linear family of graphs (called path-like graph families by Mohar). Cubic outerplanar graphs are tree-like graph families. In this paper, we derive a recursive formula for the total embedding distribution of any cubic outerplanar graph. We also obtain explicit formulas for the number of embeddings of cubic outerplanar graphs into the plane, torus, projective plane and Klein bottle. In addition, we present a O (n(h +Δ))-time algorithm to compute the genus distribution and the crosscap number distribution of any cubic outerplanar graph, where h and Δ are the height and maximum degree of the characteristic tree, respectively. We have written an efficient enumeration program in C++ for computing this recursive function and constructing tables of genus distributions of cubic outerplanar graphs. Our program is documented and available on request. ∗ The work of the first author was supported by National Natural Science Foundation of China (Grant No. 11471106) and NSFC of Hunan (Grant No. 14JJ2043). † Corresponding author. The work of the second author was supported by NNSFC under Grant No. 61673048. Y. CHEN AND T. WANG/AUSTRALAS. J. COMBIN. 68 (1) (2017), 131–146 132

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genus Distributions of Cubic Outerplanar Graphs

We present a quadratic-time algorithm for computing the genus distribution of any 3-regular outerplanar graph. Although recursions and some formulas for genus distributions have previously been calculated for bouquets and for various kinds of ladders and other special families of graphs, cubic outerplanar graphs now emerge as the most general family of graphs whose genus distributions are known...

متن کامل

Genus distributions of star-ladders

Star-ladder graphs were introduced by Gross in his development of a quadratic-time algorithm for the genus distribution of a cubic outerplanar graph. This paper derives a formula for the genus distribution of star-ladder graphs, using Mohar’s overlap matrix and Chebyshev polynomials. Newly developed methods have led to a number of recent papers that derive genus distributions and total embeddin...

متن کامل

Generating Outerplanar Graphs Uniformly at Random

We show how to generate labeled and unlabeled outerplanar graphs with n vertices uniformly at random in polynomial time in n. To generate labeled outerplanar graphs, we present a counting technique using the decomposition of a graph according to its block structure, and compute the exact number of labeled outerplanar graphs. This allows us to make the correct probabilistic choices in a recursiv...

متن کامل

Perfect Matchings in Edge-Transitive Graphs

We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...

متن کامل

Enumeration of digraph embeddings

A cellular embedding of an Eulerian digraph D into a closed surface is said to be directed if the boundary of each face is a directed closed walk in D. The directed genus polynomial of an Eulerian digraph D is the polynomial ΓD(x) = ∑ h≥0 gh(D)x h where gh(D) is the number of directed embeddings into the orientable surface Sh, of genus h, for h = 0, 1, . . . . The sequence {gh(D)|h ≥ 0}, which ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 68  شماره 

صفحات  -

تاریخ انتشار 2017